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ABSTRACT 

In this paper we present a stability analysis of the general diffusion-stabilized difference 
scheme for the equations of inviscid compressible flow in conservation form. Both one- 
step (first-order) and two-step (second-order) methods are examined, for an arbitrary 
number of space dimensions. All schemes considered are found to be governed by the 
same stability condition on the local diffusion coefficient. The lower limit of this coeffi- 
cient is proven proportional to the square of the local maximum characteristic speed; 
the best current method (Rusanov’s) employs only linear dependence. 

1. INTRODUCTION 

During a search for numerical methods applicable to problems of interstellar 
gas dynamics we examined those difference schemes for the equations of inviscid 
compressible flow (ICF) that owe their stability to the inclusion of an artificial 
diffusion term (for an example, see Lax [ 1 I). A linear stability analysis of the general 
diffusion-type scheme, as presented below, reveals a class of optimal schemes 
(incorporating the minimum diffusion required for stability) that may f?ll the gap 
in accuracy between the best-performing first-order technique, viz. Rusanov’s [2], 
and the second-order technique due to Lax and Wendroff [3]. 

Most of our derivations apply to an arbitrary hyperbolic system of conservation 
laws (HSCL) in one or two space dimensions. This system may be thought to 
represent the Lagrangean and/or Eulerian equations of ICF in one or two Cartesian 
coordinates (see refs. [I], [3]). The use of spherical or cylindrical coordinates 
introduces nondifferentiated terms into the equations; this however does not affect 
a stability analysis like ours, which is based on the Von Neumann criterion (for a 
discussion see Richtmyer and Morton’s book [4], Section 4.7). 

473 



474 VAN LEER 

2. PRELIMINARY CONSIDERATIONS 

A HSCL in one space dimension may be written as 

wt + f, = 0 (1) 

where the vector w denotes a number (say p) of functions of x and t, andf is a 
vector of the same dimension, whose components are functions of w 0nly.l As 
mentioned before, such a system may stand for the Lagrangean or Eulerian equa- 
tions of ICF in the case of slab symmetry. It is often convenient to write (1) as 

Wt + Aw, = 0, (2) 

the matrix A being the Jacobian offwith respect to w and generally depending on 
w. To make the system hyperbolic we require that A must have p real and distinct 
eigenvalues. For ICF these represent the characteristic speeds, as is assumed to be 
understood by the reader. We call the eigenvalues @(k = l,..., p) and define 

a = Max I @) /, k (3) 

a parameter often needed in the course of a stability analysis. For a HSCL in two 
space dimensions we write 

wt + .fz + 4, = 0 (4) 
or 

wt + Aw, + Bw, = 0, (5) 

the matrix B being the Jacobian of h with respect to w. Eq. (4) will represent the 
Eulerian equations of plane ICF. 

Difference schemes will be operating in a spatial mesh built up of discrete coor- 
dinates X, and, possibly, yn , respectively spaced by the constants ,4x and dy. At 
a given instant tj the size of the next time step d tj is restricted by a certain stability 
condition, viz. the Courant-Friedrichs-Lewy (CFL) condition, Henceforth a 
discrete value q(tj, x, , y,) of any function q may be abbreviated to qLn, ; in the 
one-dimensional case the second subscript is of course omitted. 

When constructing a difference scheme for eq. (1) or (4) we start from the 
following common expansion 

(A Q2 W3 
w(t + 4 = w(t) + At wt + -Yj- Wtt + --g-- wttt + . . .* 

Because we are dealing with an initial value problem it is possible to transform all 

1 This is not the most general form of a HSCL as defined in ref. [l] but the form considered 
in ref. [3]. 
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time derivatives into space derivatives with aid of the governing differential equa- 
tion. For instance, in the one-dimensional case eq. (6) passes into 

w(t + At) = w(t) - At Aw, + q.r (/pw,), - $r w%J, + ***. (7) 

The order of accuracy of a difference scheme is designated by the number ofproperly 
evaluated time derivatives it includes. We stress herewith the fact that the errors 
involved in the replacement of spatial derivatives by difference quotients should 
not be of a lower order than the overall truncation error (i.e. the truncated part of 
the expansion (6)). 

To examine the stability of a difference scheme based e.g. on eq. (5) we let it act 
on a smooth set of initial values w superimposed by some small complex perturba- 
tion w’ given by 

Clearly I, and 1, are the wavelengths of certain oscillations in the x- and y-direction; 
the frequently occurring expressions 2rrAx/& and 2rrAy/l, are usually replaced by 
(Y and 8. In the one-dimensional case the dependence on y is left out of eq. (8). 
The local amplification matrix G is now defined by 

W,?l “+I = {G + O(Ax)} w& for E -+ 0. (9 

As indicated by the above definition, terms in G of the order O(Ax) do not matter 
and therefore will always be dropped. In practice this is equivalent to regarding w, 
or any function of w, x and y, as a constant in the vicinity of the mesh point 
hn , YJ. 

The given oscillations will not grow in amplitude provided that the eigenvalues 
gyk = I,..., p) of G do not exceed one in absolute value. Hence, if 

a necessary condition for stability becomes 

g<l for any 01 and /3. (11) 

Sufficiency of this condition cannot be warranted because it is merely based on a 
linear analysis (involving only an infinitesimal variation of w); eventually numerical 
experiments must prove its validity. 
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3. ONE-STEP SCHEMES 

3.1. One dimensional case 

The simplest centereda difference approximation of eq. (!) is 

wi+1= wj 
fi 

-4f3J m+l -fL 
m m 2Ax (12) 

with truncation error O(At2). Its amplification matrix is given by 

G, = I - iXjA sin CX, (13) 
where 

Atj 
hJ-. (14) 

a zero-order parameter. The superscripts of At and X are usually omitted. From 
eq. (13) and the definitions (3) and (10) it follows that 

go2 = 1 + Pa2 sin2 01, (15) 

which means that scheme (12) is unconditionally unstable. 
The only way to cure it is a modification reducing the real part of G,, . This can 

be accomplished by adding to the right-hand part of (12) a term of order O(Ax2) 
comprising a second deriuatiue. Lax and Wendroff [3] insert a difference approxima- 
tion of the correct second-order term 

q (A%v,), , (16) 

thus reducing the truncation error to O(At3). In view of the nonlinear instabilities 
inherent in their method (see e.g. Burstein [5]) we prefer to employ a simpler 
expression -not involving the matrix A-of the following general form 

9 (KW,), (17) 

which will be interpreted as a diffusion term. The diffusion coefficient K may be 
any positive scalar function (in the mathematical sense) of t and x, and/or w. 
The factor K has been brought inside the outer diEerentation because diffusion 
terms of the form 

(W - KWm 2 (18) 

* The centering refers only to difference approximations of spatial derivatives; it is carried on 
throughout this paper in order to avoid implicit diffusion terms as much as possible. 
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do in general not yield weak solutions of eq. (1) (but e.g. shocks travelling at 
anomalous speeds, as the author experienced). 

The centered difference scheme including an approximation of (17) becomes 

)$j+1 = 
na wi - ; (f;+l m 

-fA-,) + ; {K;+#.‘~+, - w&> - K;-&J$ - w;-,>> 

with 
(19) 

Eq. (19) may also be regarded as an approximation of the diffusion equation 

At 
Wt +fz = 2x2 (‘W), 6 

(20) 

The amplification matrix associated with scheme (19) is given by 

G,, = {I - ~(1 - cos a)}Z - ihA sin 01, (22) 

where K is now regarded to be locally constant. The indices 1 respectively refer to 
a one-step scheme (orJirst-order accuracy) and one space dimension. The maximum 
factor of growth of Gll is determined by the relation 

K - h2a2 - (K” - X2a2) sin2 2 sin’ Z . 
2 I 2 (23) 

It is easily seen that the expression between curly brackets will not become negative 
if and only if 

h2a2 < K < 1. (24) 

Hence stability is expected provided that the above holds at any time ti in any point 
x, for the adopted value of ~1 . Calling 

0; = A$ m (25) 
we may rewrite (24) as 

(a,)’ < K; < 1 (26) 

and, recognizing the Courant number 

oj E Max ai m ?n, (27) 

we see that the inequalities (26) also imply the usual Courant-Friedrichs-Lewy 
condition 

ui < 1. (28) 
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When considering the interval to which the value of K is restricted, we observe 
that the upper bound (viz. K; = 1) yields Lax’s original scheme 

wi+1 = ; <Iv;-, + w;+J - ; <fk+1 -.f;-1). m 

Inserting the lower bound into (17) we obtain the expression 

(30) 

which strongly resembles the Lax-Wendroff term (16). On the basis of eigenvectors 
of A expressions (30) and (16) respectively would read 

Mfx 1 utk) I2 - I (31) 
and 

(32) 

Evidently (31) is a close but safe norm of (32) in the sense that nonlinear instabilities 
set on by the vanishing of a diagonal element of (32) (see ref. [5]) should not occur 
in connection with (31). 

Further discussion of condition (26) will be postponed until we have shown its 
validity for all difference schemes considered in this paper. 

3.2. Two-dimensional case 

We define 
Ll = [(Ox)2 + (Lly)2]1/2, (33) 

h =dt 
1 

jj =dt 
Ax' 2 dy 

and redefine 

x = (X,2 + h,2)1/2 = g$. 

(34) 

Our two-dimensional difference scheme is based on eq. (4), with artificial diffusion 
terms approximating (in general) 

iy (KIW,), + l!y 
(K2"'vh - (36) 
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The choice of the diffusion coefficients ICE and K~ however is constrained by 

-=- 

because for constant K the two terms in expression (36) should form a Laplacean.3 
Note that K, like h, is redefined; in general it is some function of t, x and y and/or w. 

The centered difference scheme thus completed becomes 

which also approximates the diffusion equation 

Wt + fz + h, = $ {(K’%), + h’,>,). (39) 

The amplification matrix of scheme (38) is 

G,, = [I - +{A12(1 - cos a) + h22(1 - cos p)}] I - I’(&4 sin a + h,B sin fi). 

(40) 
We now define a matrix S and a scalar # by 

X,A sin cx + X,B sin /3 
s = (A,2 sin2 01 + X22 sin2 fl)l12 

and 

sin L = i! &2 sin2 25 + jj22 sin2 B ‘I2 
2 x ( 2 ) 2 - 

(41) 

(42) 

Insertion of (41) and (42) into (40) yields 

G,, = { 1 - K( 1 - cos $)>>I - iS(h12 sin2 01 -I- h22 sin2 /$l12. (43) 

SThis constraint becomes desirable in the course of the general stability analysis. It appears 
that the derivation of a practical stability criterion is completely obstructed in the case that IQ 
and q are not related. 
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With aid of the Schwarz-type inequality 

P p 112 
Xl2 sin2 5 + AZ2 sin2 -2- < h (Al2 sin4 F + A,2 sin4 -2) 

one can easily prove that 

(44 

X sin * > (A,z sin2 01 + X22 sin2 /Q1j2. (45) 

The stability of scheme (38) may hence also be discussed on the basis of the matrix 

as in any case 

G,h, = { 1 - ~(1 - cos #)}I - LLS sin I/J, (46) 

gl*2 2 g,, * (47) 

Now G,*, has the same appearance as Gll in eq. (22). If the eigenvalues of S are 
called P)(k = 1 >‘**, P> and 

s = Mfx / s(k) 1 (48) 

then the stability condition appropriate to G& evidently becomes 

h2S2 < K < 1. (49) 

Though in general the eigenvalues of S cannot simply be expressed in terms of the 
eigenvalues of A and B (because these matrices do not commute) they may be 
computed with some difficulty in the particular case that (4) represents the Eulerian 
equations of plane ICF. Following Richtmyer and Morton closely (ref. [4], 
Section 13.4) we call 

cos a = 012 
A, sin 01 

sin2 cy. + X22 sin2 jQ1j2 

and subsequently obtain 

i 

u cos 8 + v sin 9 
u cos 8 + v sin 6 Ezz 
u cos 8 + v sin 8 + c 
u cos 8 + v sin 6 - c 

(51) 

where u, v and c have their usual meaning of x-, y- and sound velocity. 
The P depend on 6 and so does s, which is inconvenient. We therefore introduce 

s’ EC MFX s(a) = (u” + v2)1/2 + c (52) 
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so that always 
s < s’. (53) 

Replacing s by s’ in condition (49) hence yields a safe stability criterion 

h2S” < K < 1. (54) 

Note that hs’ is the Courant number for plane Eulerian flow; correspondingly we 
shaU write (54) as 

k’;,)” < ‘$, d 1, (55) 

the perfect two-dimensional analogon of condition (26). Without proof we state 
that its validity may even be extended to the three-dimensional case, provided only 
that the definitions (34), (35) and (37) are properly extrapolated. 

Actually condition (55) is too restrictive, because in general the equal-signs in 
(47) and (53) do not operate for the same set of values (01, /?). We have not attempted 
to derive a milder form (depending on u and u in a more intricate manner), because 
we saw neither the way nor the need to do such. 

4. TWO-STEP SCHEMES 

For the sake of completeness we shall now discuss two-step methods 
incorporating scheme (19) or (38) as the first step. The aim of the second step is to 
achieve second-order accuracy; this is accomplished by the implicit introduction 
of Wtt. We may fit all possible two-step schemes into a one-parameter family 
(uiz. of I); its one-dimensional version is 

W*(t + At) = w(t) - Atfz(t) + v {KWm(t)}z 

WO + r 4 = w(t) - r At I(1 - +)f,(t) + $fz(t + At)/, 
(56) 

spatial discretization ignored. An asterisk denotes intermediate values at t + At 
having only first-order accuracy. It is easily verified that the second step in fact 
yields 

w(t + r At) = w(t) - r At Aw, + y (A2wZ), + O(At3) (57) 

or, in words, values of w accurate to the second order, at the instant t + rAt. With 
a proper choice for K the two-step scheme may be stable within the range of the 
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CFL condition. The latter now concerns only the$naZ time step and is twice as 
weak as for the one-step scheme, namely 

rAt 
-a62, Ax (58) 

because after the first step the domain of dependence connected with the difference 
equations is effectively doubled. 

All two-step methods in use at the present start from Lax’s scheme (29), because 
of its simplicity. In the second step r is most often substituted by 2 (as originally 
proposed by Richtmyer [6]) or by 1 (a choice attributed to Wendroff), though 
schemes with different values of r have been investigated by Gourlay and Morris 
[7]. However, in practical applications there is no apparent reason to go beyond 
the range 

1 <r<2. (59) 

Apart from the final weight of the diffusion term (mr2), all two-step schemes given 
by (56) have the same amplification matrix. We shall therefore restrict the discussion 
to the scheme we consider most elegant, namely the one with r = 2. This particular 
value of r makes the CFL conditions for the two-step scheme and the constituent 
one-step scheme coincide. As one may anticipate, the stability criteria for these 
schemes are also identical, a proof of which is given below. 

The respective amplification matrices Gzl and G,, of the two-step and one-step 
schemes considered are related by 

and their conjugates by 

Gzl = I - 2itiG,, sin OL (60) 

C72l = I + 2ihACTa,, sin 0~. (61) 

From this it follows that 

I - GZ1c21 = 2ihA(G11 - Cl,,) sin (L - 4XaAaGllQl,, sin2 Q. 

According to (22) we have 

Gil - Gll = -2ix4 sin a 

yielding 

(62) 

(63) 

Z - G21G21 = 4h2A2(1 - GJ’&) sin2 01. (69 

As the eigenvalues of G2,Gz,, and G1& are I gi:’ I2 and I g$’ I2 respectively, eq. 
(64) already implies that stability of the one-step scheme is necessary and sufficient 
for stability of the two-step scheme. Hence condition (26) is applicable once more. 
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The two-dimensional two-step scheme becomes, with r = 2, 

w*(t + At) = w(t) - AU&) + h,(t)) + @We 2A2 ~[wi01m + [~%WlJ 
I (65) 

w(t + 2 At) = w(t) - 2At{f,*(t + At) + h,*(t + At)}, 

and has the amplification matrix 

G,, = I - 2i(h,A sin a: + h,B sin /3) G,, . (66) 

The appropriate stability condition is (55), as follows from an argument similar to 
the one given for the one-dimensional case. As for the three-dimensional case, we 
refer to our statement following condition (55). 

Though equally subject to nonlinear instabilities, two-step methods are usually 
preferred to the one-step Lax-Wendroff method for reasons of computational 
economy. Yet one should not forget that a two-step scheme still involves artificial 
diffusion, albeit of order O(At3) and perhaps locally minimized. The Lax- Wendroff 
scheme remains the only second-order technique that does not ultimately destroy 
contact discontinuities in a Lagrangean mesh. 

5. EXAMPLES 

We shall illustrate the implications of conditions (26) and (55) on the basis of 
a set of simple expressions for the diffusion coefficient (the subscript-n is optional 
and therefore parenthesized) 

N = 0, 1 or 2. 

Here y is a position-independent parameter which may be adjusted in order to 
meet special damping requirements. The stability conditions (26) and (55) can now 
be expressed in terms of v: 

There are three values of v that deserve special attention, viz. the interval bounds 
in (68), and 1. The reader should realize that the diffusion term 

occurring in eqs. (21) and (39) will be proportional to At if 9) = 0, independent of 
At if q~ CE 1, and inversely proportional to At if F = I/u. We will briefly go over 
the different values of N. 
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N = 0; diflusion term not adapted to local circumstances. 

As mentioned before, the case v = l/u, or K = 1, corresponds to Lax’s scheme 
(for an arbitrary number of dimensions). It is well-known that, when employing 
this scheme, one should always take the largest value of d t permitted by the CFL 
condition in order to avert excessive smearing. An important improvement would 
be achieved by the use of v = 1 or u, hence K = u or u2. However, for any K + 1 
the simple triangular structure of Lax’s scheme is lost; therefore one may as well 
choose N = 1 or 2. 

N = 1; d@usion term proportional to the local maximum characteristic speed 

This is exactly the form adopted by Rusanov f23, and needs no further comment. 
Note that for q = 1 the one-dimensional diffusion term (17) approximates 

an expression which also appears in the method of Godunov [8]. 

N = 2; d@iision term proportional to the square of the local maximum characteristic 
speed 

To the author’s knowledge this quadratic dependence has found no application 
so far; yet it clearly yields the most accurate first-order methods that are possible. 
The accuracy finds expression in a high resolution of spatial detail. With cp 3 u, 
the diffusion at any point equals the minimum needed for local stability; this 
minimum closely bounds the Lax-Wendroff term that would give second-order 
accuracy (cf. Section 3.1). Even in the case of minimum diffusion nonlinear 
instabilities are not expected. 

To compare the merits of the different diffusion coefficients represented by (67), 
we have carried out, with aid of scheme (19), some numerical integrations of the 
single nonlinear hyperbolic equation 

wt + Gb2)z = 0, (71) 

starting from a discontinuous set of initial values. Some trivial suppositions 
concerning shocks were confirmed: the shock width decreases with increasing N 
or decreasing v, but simultaneously the overshoot grows. The value v E 1 appears 
to be optimal in the sense of generating narrow shocks with little overshoot; for 
N = 1 this result was derived by Godunov [8] and experimentally found by Emery 
[9]. By choosing dt close to the CFL stability limit, both overshoot and shock 
width may be reduced; this nonlinear effect has also been observed by Rubin 
and Burstein [lo] for two-step schemes. 
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